Ascent sequences and Fibonacci numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibonacci Numbers and Decimation of Binary Sequences

The problem of computing the number of sequences of various lengths that can be obtained by decimating a given binary sequence X of length n is considered. It is proven that this number is maximized iff X is an alternating sequence and that the maximum can be expressed in terms of the Fibonacci numbers. Some other upper bounds on this number are also determined, including another bound in terms...

متن کامل

Aitken Sequences and Generalized Fibonacci Numbers

Consider the sequence (t>„) generated by t>„+ ¡ = avn bv,l_l, n 5¡ 2, where v¡ = 1, t>2 = a, with a and b real, of which the Fibonacci sequence is a special case. It is shown that if Aitken acceleration is used on the sequence (x„) defined by a„ = v„+1/v„, the resulting sequence is a subsequence of (jc„). Second, if Newton's method and the secant method are used (with suitable starting values) ...

متن کامل

Ascent sequences and the binomial convolution of Catalan numbers

In this paper, we consider two sets of pattern-avoiding ascent sequences: those avoiding both 201 and 210 and those avoiding 0021. In each case we show that the number of such ascent sequences is given by the binomial convolution of the Catalan numbers. The result for {201, 210}-avoiders completes a family of results given by Baxter and the current author in a previous paper. The result for 002...

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

Restricted Permutations, Fibonacci Numbers, and k-generalized Fibonacci Numbers

In 1985 Simion and Schmidt showed that the number of permutations in Sn which avoid 132, 213, and 123 is equal to the Fibonacci number Fn+1. We use generating function and bijective techniques to give other sets of pattern-avoiding permutations which can be enumerated in terms of Fibonacci or k-generalized Fibonacci numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2015

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1504703m